Static and Dynamic Structures of $InBr_x$ (x = 1.4, 1.5, 1.75, and 2) Studied by ⁸¹Br NOR and ¹¹⁵In NMR

Koji Yamada, Hiroshi Mohara, Tomotaka Kubo, Takashi Imanaka, Kazue Iwaki, Hiroshi Ohki, and Tsutomu Okuda

Graduate School of Science, Hiroshima University, Kagamiyama 1-3, 739-8526 Higashi-Hiroshima, Japan

Reprint requests to Dr. K. Y.; E-mail: kyamada@sci.hiroshima-u.ac.jp

Z. Naturforsch. **57 a,** 375–380 (2002); received April 2, 2002

Presented at the XVIth International Symposium on Nuclear Quadrupole Interactions, Hiroshima, Japan, September 9-14, 2001.

Structure and bonding properties of $InBr_x$ (In_5Br_7 , In_2Br_3 , In_4Br_7 and $InBr_2$) were studied by ^{81}Br and ^{115}In NQR, and ^{115}In NMR. The ethane-like $[Br_3In^{II}\text{-}In^{II}Br_3]^2$ — anion was confirmed in In_5Br_7 or In_2Br_3 by ^{81}Br NQR and the anion was characterized by the high quadrupole coupling constant at the ^{115}In site ($e^2Qq/h\approx 350$ MHz). On the other hand, In_4Br_7 showed successive phase transitions and was characterized as $[In^I]_5[In^{III}Br_4]_2[In^{III}Br_6]$ by means of ^{81}Br NQR and ^{115}In NMR below 370 K. A disordered structure at the cationic sublattice was supposed at Phase I above 370 K. NMR signals assigned to the In^I could not be detected for the powdered sample, however, all quadrupole coupling constants (e^2Qq/h) and chemical shifts (σ_{iso}) could be determined using a single crystal. The In^I sites show relatively large e^2Qq/h and also show larger distribution of the chemical shift suggesting a diversity of the In^I coordination similar to the isoelectronic main group elements such as Sn^{II} or Sb^{III} .

Key words: 115 In NMR; Single Crystal; Quadrupole Coupling Constant; Phase Transition.

1. Introduction

The chemistry of indium halocomplexes is interesting for three reasons: 1) The three oxidation states of indium, In^I, In^{II}, and In^{III} lead to an interesting structural variety. 2) In^{II} is expected to appear as the result of dynamical mixing of In^I and In^{III}. 3) Halocomplexes of indium, such as in Li₃InBr₆ [1 - 3] and Li₃InCl₆ [4], may be cation super conductors.

The crystalline compounds between InBr and InBr₂ (= In^I[In^{III}Br₄]) [5] are In₅Br₇ (InBr_{1,4}) [6 - 8], In₂Br₃ (InBr_{1,5}) [9], and In₄Br₇ (InBr_{1,75}) [10]. These crystals are more appropriately formulated as [In^I]₃[In^{II}₂Br₆]Br, [In^{II}]₂[In^{III}₂Br₆], and [In^I]₅-[In^{III}Br₄]₂[In^{III}Br₆], respectively. [Br₃In-InBr₃]²⁻, Br⁻, InBr₄⁻, and InBr₆³⁻ form anionic sublattices for the counter cations In⁺. We have synthesized and characterized these compounds by means of powder X-ray diffraction, DTA, ⁸¹Br and ¹¹⁵In NQR, and ¹¹⁵In NMR. In this paper we mainly discuss the bonding, structure and phase transitions of In₄Br₇ because of its structural changes with temperature.

2. Experimental

All compounds were synthesized from In metal and InBr $_3$, which was purified by sublimation. For each compound a stoichiometric mixture of In and InBr $_3$ was heated in an evacuated sealed tube at 350 °C for three days, and the homogeneous mixture was quenched to room temperature and annealed for a week just below the melting point. Single crystals of In $_4$ Br $_7$ and InBr $_2$ were also obtained from the melt by the Bridgman technique. All samples were characterized by XRD measurements.

 81 Br and 115 In NQR was obtained with a conventional pulsed spectrometer. The assignment of the 81 Br and 79 Br NQR signals was confirmed by the quadrupole moment ratio $Q(^{79}$ Br)/ $Q(^{81}$ Br) = 1.1971. 115 In NMR was carried out with a similar spectrometer at 6.4 T. An acidic solution of $In(NO_3)_3$ was used as chemical shift standard. A home made variable temperature NMR prove with a goniometer was used to observe the angular dependence of the 115 In NMR.

0932-0784 / 02 / 0600-0375 \$ 06.00 © Verlag der Zeitschrift für Naturforschung, Tübingen • www.znaturforsch.com

Table 1. 81Br NQR frequencies of In₅Br₇, In₂Br₃, In₄Br₇, and InBr₂ at 77 K.

Compound	Chemical Formula	⁸¹ Br NQR Frequency / MHz	Assignment
In_5Br_7	$(In^{+})_{3}(In_{2}Br_{6}^{2-})(Br^{-})$	88.665 ^a , 87.921, 87.711, 86.663, 85.792, 82.197, 80.444, 79.994, 79.515, 71.324, 71.011	[Br ₃ In-InBr ₃] ²
$\begin{array}{c} \rm In_2 Br_3 \\ \rm In_4 Br_7 \end{array}$	${\rm (In^{+})_{2}(In_{2}Br_{6}^{\ 2-})} \over {\rm (In^{+})_{5}(InBr_{4}^{\ -})_{2}(InBr_{6}^{\ 3-})}$	90.309, 88.989, 82.753, 80.438, 78.139, 72.245, 71.185 110.05, 107.93, 107.42, 107.06, 106.87, 104.48, 103.48°, 103.04, 102.40, 102.13, 101.25°, 99.09, 98.99, 97.00	$[\mathrm{Br_3In}\mathrm{-InBr_3}]^2$ $[\mathrm{InBr_4}$
		58.49, 58.16, 57.97, 57.16, 57.04, 56.26, 55.93, 55.02, 54.73, 54.18, 53.10, 51.59	InBr ₆ ³⁻
${\rm InBr}_2$	$(In^+)(InBr_4^-)$	106.479, 104.055	InBr ₄ –

a Doublet

Compd.	Method	T	115 I	n NQR	freq. / l	МНz	e^2Qqh^{-1}	η	$\sigma_{ m iso}$	Assignment
		/K	ν_1	ν_2	ν_3	ν_4	/MHz		/ppm	
In ₅ Br ₇	NQR	77	27.97	26.44	41.96	56.58	343.4	0.413		[Br ₃ In-InBr ₃] ²⁻
5 ,			28.22	26.64	42.58	57.18	346.5	0.414		5 5
			28.51	27.04	42.87	57.97	351.2	0.411		
			29.01	27.20	43.58	58.26	353.3	0.418		
$In_{4}Br_{7}$	NMR	298					6.50	0.0	914	$In^{III}(1)$, $InBr_{\Delta}^{-}$
7 /							1.85	0.0	419	$In^{III}(2)$, $InBr_6^43$
							61.5	0.0	872a	$In^{I}(3), In^{+}$
							41.4	0.0	1040 ^a	$In^{I}(4), In^{+}$
							22.9	0.0	-205^{a}	$In^{I}(5), In^{+}$
InBr ₂	SEDOR	77	1.761	1.162	1.214	1.811	11.93	0.956		InBr ₄ —
2	NMR	298					12.8	0.93	1006	InBr ₄ -

Table 2. ¹¹⁵In NQR and NMR Parameters for In₅Br₇, In₄Br₇, and InBr₂.

^a Estimated from the single crystal data at 230 K.

3. Results and Discussion

3.1. 81 Br and 115 In NQR parameters for In_5Br_7 , In_2Br_3 , In_4Br_7 , and $InBr_2$

Table 1 summarizes the 81 Br (I=3/2) NQR frequencies for In_5Br_7 , In_2Br_3 , In_4Br_7 and $InBr_2$. The 81 Br NQR frequencies were divided into the three groups 100 - 110 MHz, 70 - 90 MHz and 51 - 59 MHz, and these groups could be assigned to $InBr_4$ –, $[Br_3In-InBr_3]^2$ – and $InBr_6$ ³– anions, respectively. Table 2 summarizes the 115 In (I=9/2) NQR and NMR parameters determined by several different techniques. The 115 In NQR spectrum for In_5Br_7 , assigned to the four crystallographically different $[Br_3In-InBr_3]^2$ – anions, was consistent with the structure [9]. Although a large e^2Qq/h parameter (348.6 MHz on average) was expected for the In-In bond, the asymmetry parameter of ca. 41% was much higher than expected. This large asymmetry parameter may suggest strong interactions between the anions and In^+ cations.

Two ⁸¹Br NQR signals were observed for $InBr_2$ continuously from 77 K to 298 K with the same intensity ratio, suggesting a $C_{2\nu}$ -mm2 point symmetry

of the ${\rm InBr_4}^-$ anion. As Table 2 shows, all four $^{115}{\rm In}$ NQR transitions were detected by means of spin-echo double resonance ($^{81}{\rm Br}$ NQR \leftrightarrow $^{115}{\rm In}$ NQR) at 77 K. The small e^2Qq/h with a large asymmetry parameter is consistent with the point symmetry of the ${\rm InBr_4}^-$ anion. This assignment was also confirmed by the second-order quadrupole effect of the $^{115}{\rm In}$ NMR at 298 K, as will be discussed later. However, a $^{115}{\rm In}$ NMR signal assigned to the ${\rm In^I}$ site could not be detected due to its large e^2Qq/h .

3.2. Successive Phase Transitions of In₄Br₇ Detected by DTA and ⁸¹Br NQR

The representative DTA of $\rm In_4Br_7$ is shown in Fig. 1 together with the phases determined by DTA, X-ray diffraction, and $\rm ^{81}Br$ NQR. This compound shows four phase transitions at 95, 195, 280, and 370 K and melts at ca. 460 K. The phase transitions at 95 K and 370 K showed hysteresis in the NQR and DTA. A complicated situation arises by the fact that the crystal from the melt is metastable. Although the crystalline sample obtained from the melt is more stable than its powder state, it changes to a white powder after several weeks. Furthermore, a mechanical stress such as

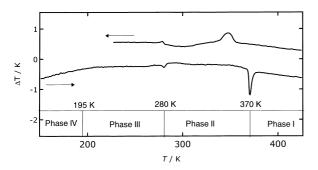


Fig. 1. DTA heating and cooling curves for In_4Br_7 together with the phases.

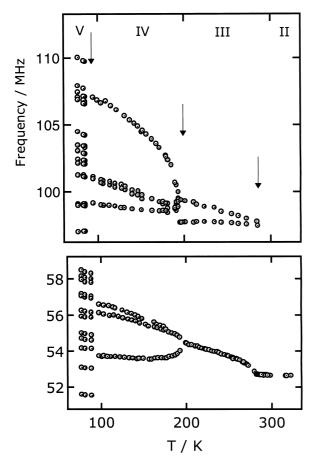


Fig. 2. Temperature dependence of 81 Br NQR for In_4Br_7 . Two frequency regions assigned to $InBr_4$ and $InBr_6$ anions are shown separately.

grinding accelerates this phase transition and showed a quite different XRD pattern which could be indexed as an orthorhombic system with a = 747.3 pm, b = 1056.1 pm, and c = 1439.1 pm. On heating again

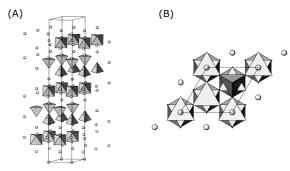


Fig. 3. Crystal structure of the trigonal In_4Br_7 , a=757.75 pm, c=4657.7 pm with $R\bar{3}m$ [10]. Small circles indicate In^+ cations. (A) Drawing perpendicular to the c-axis and (B) parallel to the c-axis.

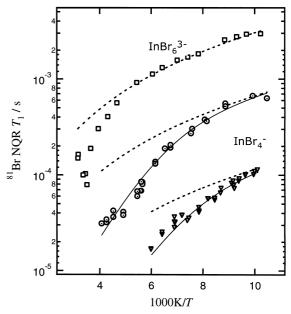


Fig. 4. Temperature dependence of ⁸¹Br NQR T_1 for In₄Br₇. The dotted lines denote the Raman process, $1/T_1 = aT^2$.

above 420 K, this powder pattern changed to the original trigonal phase and could be maintained down to room temperature.

Figure 2 shows the temperature dependence of the 81 Br NQR which appears in two different regions. Although some signals overlapped each other at 77 K, sixteen and twelve 81 Br NQR signals could be detected for the tetrahedral $InBr_4^-$ and the octahedral $InBr_6^{3-}$ anions, respectively. This finding suggests that there are four crystallographically different tetrahedral anions and two octahedral anions, and this result is consistent with the formula $[In^{1}]_{5}[In^{III}Br_4]_{2}$ -

[In^{III}Br₆]. At ca. 95 K the number of the ⁸¹Br NQR lines decreased to four and three discontinuously, and further two and one above 195 K for the tetrahedral and octahedral site, respectively. The point symmetry of the $InBr_4^-$ anion in Phase III is $C_{3\nu}$ -3m, because this phase shows two 81Br NQR signals with intensity ratio 1:3 from the high frequency side. On the other hand, the InBr₆³⁻ anion shows only one ⁸¹Br NQR signal, suggesting a D_{3v} - $\bar{3}m$ point symmetry. Figure 3 shows the structure of In₄Br₇ reported by Dronskowski. Our NOR results at Phase II and III are consistent with the structure. As Fig. 2 shows, the NQR signals assigned to InBr₄⁻ anion disappeared at ca. 280 K accompanied by a gradual decrease of the spin-lattice relaxation time T_1 . Therefore T_1 was observed as a function of temperature as shown in Fig. 4, where the dotted lines correspond to the Raman process $(1/T_1 = aT^2)$. Except for an anomalous behavior near $T_{\rm tr}$ = 280 K, the T_1 vs. 1/T curve assigned to the InBr₆^{3–} anion obeys the Raman process. On the other hand, T_1 vs. 1/T plots assigned to the $InBr_4$ anion deviate from the Raman process and are expressed by the equations

$$1/T_1 = 0.869 \text{ s}^{-1} \text{K}^{-2} \cdot T^2$$

$$+ 1.45 \cdot 10^7 \text{ s}^{-1} \cdot \exp(-8.03 \text{ kJmol}^{-1}/RT),$$

$$1/T_1 = 0.150 \text{ s}^{-1} \text{K}^{-2} \cdot T^2$$

$$+ 2.81 \cdot 10^6 \text{ s}^{-1} \cdot \exp(-9.05 \text{ kJmol}^{-1}/RT),$$

$$(2)$$

where the second term represents a contribution from an ionic motion. These activation energies ($E_a = 8 \sim 9 \text{ kJmol}^{-1}$) are too small for a reorientation of the InBr₄⁻ anion and furthermore, the pre-exponential factors are smaller by several orders than expected. These findings suggested a modulation effect due to some motion of the neighboring cation. One of the possible activation processes is a local motion of the InI(5), because it forms the shortest interactions with the InBr₄⁻ anions and also shows a large temperature dependence of the e^2Qq/h . With decreasing temperature, the InI(5) is supposed to shift from the center of the octahedral hole to an off-center position similar to InI(3) or InI(4). The coordination property of InI will be described later.

3.3. Dynamic Structural Changes Detected by ¹¹⁵In NMR Using Polycrystalline In₄Br₇

Figure 5 shows the temperature dependence of the 115 In NMR of polycrystalline In_4Br_7 . At 77 K, two

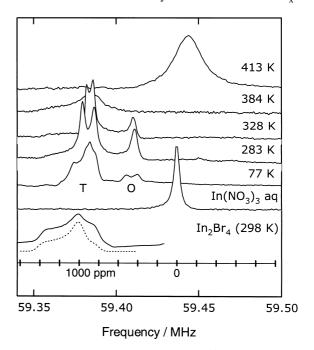


Fig. 5. Temperature dependence of the 115 In NMR spectra using a powder sample. A powder pattern of InBr₂ is shown together with a simulation.

well resolved peaks having second order quadrupole effects were observed at around 59.38 MHz (930 ppm) and 59.41 MHz (420 ppm). Low and high frequency peaks could be assigned to the tetrahedral and the octahedral $\rm In^{III}$ sites, respectively, referring to that of the $\rm InBr_4^-$ anion in $\rm InBr_2$. Since there are crystallographically four tetrahedral and two octahedral anions at 77 K, only averaged parameters were estimated as e^2Qq/h =10.0 MHz with η = 0.60 for the tetrahedral site and e^2Qq/h = 9.0 MHz with η = 0.0 for the octahedra site.

Since the crystal undergoes a phase transition to a trigonal system at 195 K, the tetrahedral site shows a typical second order effect with $\eta=0$. On the other hand, no second order effect was observed for the octahedral site. With further increasing the temperature, the ¹¹⁵In NMR changed drastically at 370 K, at which a strong endothermic peak was observed on the DTA curve. Although the Rietveld refinement above 370 K did not finish, the powder pattern was quite similar to that at 298 K except a change in the intensity. These measurements from NMR, DTA and X-ray suggest that an order-disorder transition takes place in the cationic sublattice at 370 K. A new broad peak appeared around -120 ppm at 413 K, probably

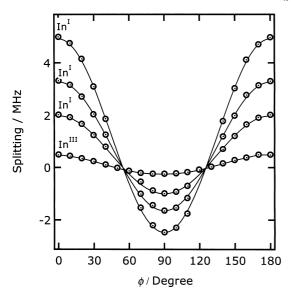


Fig. 6. Angular dependence of the single crystal 115 In NMR. The splitting between a pair of the first satellite transitions is plotted against ϕ at 298 K.

as a result of the averaged structure due to cationic diffusion. However, in this stage the oxidation state and the possible positions of the In atoms can not be decided unambiguously only from the NMR.

3.4. Quadrupole Coupling Constants at the In¹ and In^{III} Sites by Single Crystal NMR

Using a single crystal, we could determine e^2Qq/h for all In sites. ¹¹⁵In has a nuclear spin I=9/2. Hence 9 allowed transitions ($\Delta m=1$) are expected for each In site. It was convenient that all In sites are located on the three-fold axis, and hence all q_{zz} directions must be parallel to the c-axis of the trigonal system. Therefore the axially symmetric e^2Qq/h and chemical shift tensor can be determined unambiguously from the rotation pattern about one axis. According to Abragam, the first order quadrupole effect with axial symmetry is expressed as [11]

$$\Delta \nu = \nu_{\rm q} \cdot (3\cos^2\phi\sin^2\theta - 1),\tag{3}$$

where $\Delta\nu$ means a splitting between a pair of satellite transitions (1/2 \leftrightarrow 3/2 and -1/2 \leftrightarrow -3/2), $\nu_{\rm q}$ = $e^2Qqh^{-1}/24$, ϕ an angel of the sample rotation, and θ an angle between q_{zz} and the rotation axis of the crystal. Contributions from the second order quadrupole effect and the chemical shift are canceled out in (3). On the other hand, the contribution from the second order quadrupole effect on the central transition (-1/2)

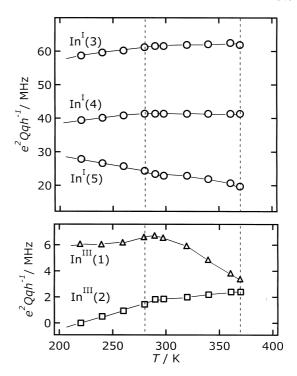


Fig. 7. Temperature dependence of the e^2Qq/h at the five 115 In sites. In III (1) and In III (2) sites are assigned to the tetrahedral and octahedral anions, respectively. In I (3), In I (4), and In I (5) are assigned to the In $^{+}$ cations.

\leftrightarrow 1/2) is expressed as

$$\nu_{1/2} - \nu_{L} = (-\nu_{q}^{2}/16\nu_{L}) \cdot (I(I+1) - 3/4)$$

$$\cdot (1 - \cos^{2}\phi \sin^{2}\theta) \cdot (9\cos^{2}\phi \sin^{2}\theta - 1),$$
(4)

where $\nu_{1/2}$ means an NMR frequency of the central transition with a second order effect, and $\nu_{\rm L}$ a Larmor frequency.

Figure 6 plots the first order splitting as a function of ϕ at 298 K for three In^I sites and a tetrahedral In^{III} site. From this measurement, θ was determined to be 86(1)°. Table 2 summarizes e^2Qq/h parameters for these sites. Furthermore, the temperature dependence of e^2Qq/h could be easily determined from the spectra at an orientation with a maximum splitting (ϕ = 0). The plot e^2Qq/h vs. T shows a slight change at 280 K as displayed in Figure 7. However, at 370 K (Phase II \leftrightarrow Phase I) all satellite transitions disappeared, suggesting a drastic change of the cationic sublattice. Although the spectrum near $\nu_{\rm L}$ was very complicated, the second order shifts of all central transitions could be traced at 230 K, referring to the first order splittings. From the numerical analysis of the

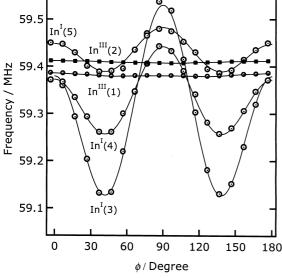


Fig. 8. Angular dependence of the central transitions (-1/2) \leftrightarrow 1/2) corresponding to the five In sites at 230 K.

angular dependence shown in Fig. 8, the both e^2Qq/h and chemical shifts (σ_{iso}) were determined. As Table 2 shows, σ_{iso} for the In^I sites distribute over 1200 ppm, suggesting a characteristic distortion of the In^I coordination. Figure 9 shows the nearest environments of

- [1] Y. Tomita, H. Ohki, K. Yamada, and T. Okuda, Solid State Ionic 136-137, 351 (2000).
- [2] Y. Tomita, A. Fujii, H. Ohki, K. Yamada, and T. Okuda, Chem. Lett. 1998, 223.
- [3] Y. Tomita, K. Yamada, H. Ohki, and T. Okuda, Z. Naturforsch. 53a, 466 (1998).
- [4] H. J. Steiner and H. D. Lutz, Z. Anorg. Allg. Chem. **613**, 26 (1992).
- [5] J. E. Davis, L. G. Waterwarth, and I. J. Worral, J. Inorg. Nucl. Chem. 36, 805 (1974).
- [6] T. Staffel and G. Meyer, Z. Anorg. Allg. Chem. 563, 27 (1988).
- [7] R. E. Marsh and G. Meyer, Z. Anorg. Allg. Chem. 582, 128 (1990).

the three In^I sites. In^I(5), which showed the smallest e^2Qq/h , was unambiguously assigned to an In at 3a (0,0,0) site, shown in Fig. 9(C), because of the roughly halft intensity of the ¹¹⁵In NMR compared to the others. This site has a point symmetry $\bar{3}m$ with six bonds at 350.6 pm. On the other hand, In^I(3) with the largest e^2Qq/h was tentatively assigned to an In^I at a 6c(0,0,0.4174) site because this In has three short In-Br bonds (327.6 pm) with a considerably distorted coordination. It is especially interesting that the distortion appearing on the In^I is quite similar to that observed for the isoelectronic Sn^{II} or Sb^{III} having an s-electron lone pair. This effect has been theoretically studied as a second-order Jahn-Teller instability [10]. However, it is also possible to understand this feature as the hypervalent nature of the main group elements having an s-electron lone pair [12, 13].

K. Yamada et al. · Static and Dynamic Structures of InBr_x

(C) In(5)

- [8] M. Ruck and H. Barnighausen, Z. Anorg. Allg. Chem. **625**, 577 (1999).
- [9] T. Staffel and G. Meyer, Z. Anorg. Allg. Chem. 552, 113 (1987).
- [10] R. Dronskowski, Angew. Chem. Int. Ed. Engl. 34, 1126 (1995).
- A. Abragam, Principles of Nuclear Magnetism, Oxford University Press, London 1961, Chapt. 7
- [12] K. Yamada and T. Okuda, Chemistry of Hypervalent Compounds, ed. by K. Akiba, Wiley-VCH, New York 1999, Chapt. 3.
- [13] K. Yamada, S. Nose, T. Umehara, T. Okuda, and S. Ichiba, Bull. Chem. Soc. Japan 61, 4265 (1988).